2.5 - Proofs About Angle Pairs and Segments (Part 2)

For Exercises 1–8, find each lettered angle measure without using a protractor.

1)

2)

-3

4)

5)

6)

For #7–12, tell whether each statement is always (A), sometimes (S), or never (N) true.

- 7) The sum of the measures of two acute angles equals the measure of an obtuse angle.
- 8) If $\angle XAY$ and $\angle PAQ$ are vertical angles, then either X, A, and P or X, A, and Q are collinear.
- 9) The sum of the measures of two obtuse angles equals the measure of an obtuse angle.
- 10) The difference between the measures of the supplement and the complement of an angle is 90° .
- 11) If two angles form a linear pair, then they are complementary.
- 12) If a statement is true, then its converse is true.

For # 13–16, fill in each blank to make a true statement.

- 13) If one angle of a linear pair is obtuse, then the other is _____.
- 14) If $\angle A \cong \angle B$ and the supplement of $\angle B$ has measure 22°, then $m\angle A =$ ______.
- 15) If $\angle P$ is a right angle and $\angle P$ and $\angle Q$ form a linear pair, then $m\angle Q$ is ______.
- 16) If $\angle S$ and $\angle T$ are complementary and $\angle T$ and $\angle U$ are supplementary, then $\angle U$ is a(n)

_____ angle.

Find the value of each variable and each angle. SHOW ALL ALGEBRAIC WORK!

18)

19) Given: $\angle 1 \cong \angle 3$

Prove: $\angle 6 \cong \angle 4$

Statement

3. _____

5. ∴∠6≅∠4

Transitive Property

20) Given: $\angle ABD$ is a right angle $\angle CBE$ is a right angle

Prove: $\angle ABC \cong \angle DBE$

Statement	Reasons
1. ∠ABD is a right angle	
$\angle CBE$ is a right angle	
2. $\angle ABC$ and $\angle CBD$ are complementary	
3. $\angle DBE$ and $\angle CBD$ are complementary	
$4. \therefore \angle ABC \cong \angle DBE$	